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LE'ITER TO THE EDITOR 

Universal distance ratios for two-dimensional polymers 

J L Cardyt and H SaleurS 
t Department of Physics, University of California, Santa Barbara, CA 93106, USA 
$ Service de Physique Thborique.8 de Saclay, F-91191 Cif-sur-Yvette Cedex, France 

Received 14 March 1989 

Abstract. By using a quantitative version of the e-theorem in conformal theories, we 
determine some universal gometrical features of two-dimensional critical systems, with 
emphasis on the ratios of mean square distances for polymers. 

The application of the principle of conformal invariance has provided a variety of 
new results for two-dimensional critical phenomena. Among these are the calculation 
of exact values of critical exponents, which can be observed in real or computer 
experiments. Due to their geometrical nature, polymer systems have often been used 
as the simplest examples for illustrating predictions of the theory. 

Less progress has been made in the understanding of the vicinity of the critical 
point, where one would like to determine explicity the different universal scaling 
functions. So far, one of the main results obtained in a quantitative version of the 
c-theorem [ 11 of Zamolodchikov, which allows the calculation [2] of the universal 
product limT+TcfSt2 in terms of the central charge of the associated critical theory. In 
this letter, as a further application of the c-theorem, we determine some universal 
geometrical features of 2~ critical systems, with emphasis on the ratios of mean square 
distances for polymers. 

We first consider an O ( n )  model near the critical point, with both thermal and 
magnetic perturbations, and continuum limit Hamiltonian 

X = F + t  E(r)d2r+h s'(r)d2r. (1) 

Here F is the fixed-point Hamiltonian, E and s are the energy and spin operators. 
Due to the added terms in ( l ) ,  the stress-energy tensor has a non-vanishing trace given 
by 

O ( r )  =2.rr[y,t&(r)+yhhs'(r)] (2) 
where y=2-x ,  x the scaling dimension. The sum rule established in [2], A c =  
(3/47r) 5 r2(0(r)0(0))d2r relates the difference of the central charges of the uv and IR 
stable fixed points to the second moment of the two-point function of 0. In the case 
under consideration, the I R  stable fixed point is always the trivial one with c = 0. Thus 
the integral 

(3)  2 2  1 I r2[y:f2(&(r)&(o))+Yhh (S  (r)s1(0))+2Y,Yhfh(s1(r)&(o))] d2r 
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is independent of both r and h in the scaling region. In this expression, correlators 
are calculated with the Hamiltonian ( l ) ,  and we can expand them in powers of h. In 
the high-temperature phase where s--s symmetry is not broken, the first-order term 
vanishes, while the second-order one gives 

y:t2 I ( r ,  - r 2 ) 2 ( ~ ( r l ) ~ ( r 2 ) s ’ ( r ) s 1 ( 0 ) )  dZrd2rldZr2+2y2h r2 ( s ’ ( r ) s ’ (0 ) )  d2r I 
-4y,yht r:(e(rl)sl(r)s’(0))d2rd2r, = O  (4) 

where correlation functions are now to be evaluated for a Hamiltonian with only a 
thermal perturbation. In (4) and subsequent equations the connected part of all 
correlation functions is implied. 

The discrete Hamiltonian for the O( n) model is X = -p X,,, s i -  sj where (ij) denotes 
nearest neighbours of a regular lattice, p is the inverse temperature and s are n- 
component spins with (SI’ = n. We can evaluate the equivalent of integrals in (4) by 
the usual graphical expansion [3]. In the n + 0 limit, the loops disappear, as well as 
the subtracted terms in the connected correlators. The meanvalue ( & ( r l ) ~ ( r 2 ) s ’ ( r ) s ’ ( O ) )  
for instance is interpreted as a sum over self-avoiding walks with extremities in 0 and 
r, and a bond in r , ,  r2 .  Note that each insertion of ~ ( r )  can be connected to the 
polymer in two ways, giving rise to factors of 2. Thus (4) gives 

In this expression, wI is the number of configurations of a SAW of length 1 attached 
to the origin. (RL)  and (R’) are the usual radius of gyration and mean square end-to-end 
distance, while (R”)  is the mean square distance of a monomer to the origin. Note 
the relation (R”)=(R&)+(R:) where R, is the distance of the centre of mass to the 
origin. Evaluating the asymptotic behaviour of sums in (5), with wI  - lY - ’p i1  and 
t = p, - p > 0 gives the result 

The exponents y, = $ and yh = being known from Coulomb gas or conformal invari- 
ance techniques [4], (6) provides a precise relation between two universal ratios of 
geometrical quantities. Unfortunately the c-theorem does not seem to give access to 
the value of each of these ratios separately. ( R i ) / ( R 2 )  has been obtained [5] to second 
order in &-expansion as d x 0.8567. A second-order calculation [6] gives similarly for 
( R ” ) / ( R 2 )  the value f x 0.8733. Using these numbers we find for the combination in 
(6) a value of order 5%.  

Identity (3) can also be used in the broken symmetry phase where correlators 
involving an odd number of spin operators do not vanish. At first order in h one finds 
then 

- t y t  ( r l - r ) 2 ( ~ ( r l ) ~ ( r ) s ’ ( 0 ) ) d 2 r l d 2 r + 2 y h  r2(&(r)s1(0))d2r=0 (7) I 
where averaged quantities are calculated with the Hamiltonian perturbed by the thermal 
operator, t < 0. Using scaling arguments, the last correlator can be replaced, up to a 



Letter to the Editor L603 

factor 1 + (yh/yt), by its ?-derivative, giving 

yt 1 (r,-r)2(E(rl)E(r)s'(0))d2rd2rl- 2yh 1 r : ( E ( r l ) E ( r ) s I ( 0 ) )  d2rd2rl = O .  (8) 
l + ( Y h / Y r )  

This provides a relation between different moments of the same correlator ( E E S ) .  

One can use (8) to predict some geometrical properties of the dense phase of 
polymers [7]. The subtracted terms in connected correlators disappear due to the n + 0 
limit, and ( E ( r I ) E ( r ) s l ( 0 ) )  is a sum over configurations of a polymer passing through 
r and r1 , with one extremity in 0, and filling some finite fraction f> 0 of the accessible 
volume since p > pc.  The other extremity, due to this filling, is sent to infinity [7]. 
Hence from (8) we deduce the relation 

Yh ( R:)/( R ' ~ )  = - 
Yr + Y h  

(9) 

where the radii have the same definition as in ( 6 ) .  Equation (9) applies to a polymer 
attached at the origin and filling a fraction f + O  of the accessible volume, the limit 
f + O  being taken after the thermodynamic limit. Using the above values of the 
exponents, one finds for the right-hand side g. The ratio (Rb) / (  R'2> is thus larger on 
the low-temperature side, as expected since the polymer is more compact. 

Equation (8) may also be interpreted for magnetic systems in terms of a droplet 
picture [8]. Unlike the polymer case, this geometric picture is not exact, but nevertheless 
gives a useful way of thinking about the low-temperature phase. As an example, 
consider the Ising model where all the spins at infinity are fixed to be +l .  At low 
temperatures, the dominant configurations contributing to a fluctuation in the magneti- 
sation s(0) at the point r = 0 consist of a single droplet, or domain, surrounding r = 0, 
inside of which the spins are all -1. In these configurations, the fluctuations in the 
energy density E (  r )  occur only on the boundary of the droplet. Thus, the first integral 
in (8) is proportional to twice the mean squared radius of gyration of the boundary 
R:. Similarly the second integral is proportional to the mean square distance R: 
between a point on the boundary and a point in the interior of the droplet. Equation 
(8) then predicts that 

(10) 

Of course, close to criticality where (8) is supposed to be valid, the oversimplified 
model described above is not correct due to other fluctuations. However, in the spirit 
of the droplet model one may assume that these serve only to renormalise the local 
energy density and magnetisation, without destroying the whole picture. For a disc 
(indeed for any regular polygon) the above geometrical ratio is i. For a very filamentary 
object, where all points of the interior are very close to the boundary, the ratio is 3. 
For an object shaped like a spermatozoon, where most of the perimeter is well separated 
from the bulk, the ratio is 4. For the Ising model, the right-hand side of (10) is equal 
to about 1.53. Thus we conclude that Ising droplets are rather symmetrical, compact 
objects. 

It is interesting to notice that the low-temperature phase of the O( n )  model is also 
critical, with properties that do not depend on /3 for n < 2. Letting y, + 0 in (9) we find 

(11) 
which should apply to a polymer filling any fraction f >  0 of the volume. The result 
(11) looks reasonable for a dense walk. Indeed one expects the walk to fi l l  the space 

R:/ R: = (Yr + Yh ) / Y h  

( R:)/( R ' ~ )  = 1 
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in a homogeneous way around its origin which should thus coincide with the centre 
of mass. 

The above method can also be applied to the case of a tricritical point. We discuss 
here again the example of polymers. If one considers chains for which short distance 
repulsions and attractions compete, it is well known that a collapse transition can 
occur at the so-called theta point. The latter is described by a tricritical O( n), n + 0, 
theory. 

In two dimensions, a model has been proposed [9] to study this transition, where 
the exponents can be calculated exactly. There, a polymer is represented by a self- 
avoiding walk, and attractions are induced by a gas of annealed forbidden random 
hexagons. If n = 0, the 0 point occurs when obstacles percolate. 

An advantage of this model is that the two scaling directions are microscopically 
identified, the associated relevant operators being the two legs (q2)  and four (q4)  legs 
operators with dimensions [9] x2 = $, x4 = 2. q2 is coupled to the fugacity p of monomers 
( q2 coincides with the E operator used above), and q4 to the nearest-neighbour attraction 
energy. Hence we can consider the fixed (e) point Hamiltonian perturbed by q2 and 
q4 as in ( l ) ,  the c-theorem leading to a formula similar to (3). 

At first order one finds then, as in (8) 

Taking n + 0 limit keeps a single self-avoiding loop with attractions. In the graphical 
expansion of integrals in (12), the loops are weighted with the additional factor of 
their number of nearest-neighbour contacts due to the q4 insertions. However, it is 
known [lo] that the probability distribution of this number is sharply peaked when 
1 + 00, so we can write 

where ( R ; )  is the usual radius of gyration and ( R ” )  is the mean square distance of a 
monomer to a nearest-neighbour contact. Studying the ratio (13) may be a way of 
determining numerically the crossover exponent 4 = y4/y2 at the theta point. 
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